Evaluation

Evaluation#

Once training is done, we can perform evaluation depending on the use case. We recommend using GPUs for evaluation.

  1. Autoregressive if we have an autoregressive model, we can simply run:

# Evaluating autoregressive model, e.g., 
# --model_name 'unet_s2s'
# --eval_years 2022
# --version_num 0       ## Checkpoint versions autogenerated in logs/
# --lra5 't2m' 'tp'     ## Additional LRA5 vars to be evaluated
# --oras5 'sosstsst'    ## Additional ORAS5 vars to be evaluated

$ python eval_iter.py --model_name <str> --eval_years <int> --version_num <int> --lra5 [...] --oras5 [...]
  1. Direct if we have a collection of models trained specifically for unique lead_time, we can run:

# Evaluating direct model with the default sequence of
# lead_time = [1, 5, 10, 15, 20, 25, 30, 35, 40, 44] e.g., 
# --model_name 'unet_s2s'
# --eval_years 2022
# --version_nums 0 4 5 6 7 8 9 10 11 12 
# --lra5 't2m' 'tp'     ## Additional LRA5 vars to be evaluated
# --oras5 'sosstsst'    ## Additional ORAS5 vars to be evaluated

$ python eval_direct.py --model_name <str> --eval_years <int> --version_nums [...] --lra5 [...] --oras5 [...]
  1. Ensemble if we have e.g., probabilistic model that generates ensemble forecasts and are supposed to be evaluated with additional probabilistic metrics, we can run:

# Evaluating ensembles with additional probabilistic metrics e.g., 
# --model_name 'vae_s2s'
# --eval_years 2022
# --version_num 0
# --lra5 't2m' 'tp'     ## Additional LRA5 vars to be evaluated
# --oras5 'sosstsst'    ## Additional ORAS5 vars to be evaluated

$ python eval_ensemble.py --model_name <str> --eval_years <int> --version_num <int> --lra5 [...] --oras5 [...]

Accessing Baseline Scores#

You can access the complete scores (in .csv format) for climatology, persistence, physics-based (control + perturbed), and data-driven models here. Below is a snippet from logs/climatology/eval/rmse_climatology.csv, where each row represents e.g., <METRIC> == RMSE, at each future timestep.

z-10

z-50

z-100

z-200

z-300

w-1000

539.7944

285.9499

215.14742

186.43161

166.28784

0.07912156

538.9591

285.43832

214.82317

186.23743

166.16902

0.07907272

538.1366

284.96063

214.51791

186.04941

166.04732

0.07903882